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Abstract 

Atomic force microscopy (AFM) force-distance curves have become a fundamental tool in several fields of research, such 
as surface science, materials engineering, biochemistry and biology. Furthermore, they have great importance for the study of 
surface interactions from a theoretical point of view. 

Force-distance curves have been employed for the study of numerous materials properties and for the characterization of all 
the known kinds of surface forces. Since 1989, several techniques of acquisition and analysis have arisen. An increasing 
number of systems, presenting new kinds of forces, have been analyzed. AFM force-distance curves are routinely used in 
several kinds of measurement, for the determination of elasticity, Hamaker constants, surface charge densities, and degrees of 
hydrophobicity. 

The present review is designed to indicate the theoretical background of AFM force-distance curves as well as to present 
the great variety of measurements that can be performed with this tool. 

Section 1 is a general introduction to AFM force-distance curves. In Sections 2 -4  the fundamentals of the theories 
concerning the three regions of force-distance curves are summarized. In particular, Section 2 contains a review of the 
techniques employed for the characterization of the elastic properties of materials. After an overview of calibration problems 
(Section 5), the different forces that can be measured with AFM force-distance curves are discussed. Capillary, Coulomb, Van 
der Waals, double-layer, solvation, hydration, hydrophobic, specific and steric forces are considered. For each force the 
available theoretical aspects necessary for the comprehension of the experiments are provided. The main experiments 
concerning the measurements of such forces are listed, pointing out the experimental problems, the artifacts that are likely to 
affect the measurement, and the main established results. Experiments up to June 1998 are reviewed. Finally, in Section 7, 
techniques to acquire force-distance curves sequentially and to draw bidimensional maps of different parameters are listed. 
© 1999 Elsevier Science B.V. All rights reserved 

I. Introduct ion 

1.1. General overview: A F M  and force-dis tance  curves 

Since  1989, the  a tomic  fo rce  m i c r o s c o p e  ( A F M )  [1] has  e m e r g e d  as a usefu l  tool  for  s t udy ing  sur face  

in t e rac t ions  b y  m e a n s  o f  f o r c e - d i s t a n c e  curves .  A g rea t  dea l  o f  w o r k  has  been  p e r f o r m e d  on bo th  its 

t heo re t i ca l  and  e x p e r i m e n t a l  aspects .  T h e  hea r t  o f  the  A F M  is a can t i l eve r  wi th  a m i c r o f a b r i c a t e d  t ip  

that  def lec t s  w h e n  in t e rac t ing  wi th  the  s a m p l e  surface.  P r o v i d e d  the s a m p l e  can  be  s c a n n e d  b y  m e a n s  o f  

a p i ezoac tua to r ,  the  can t i l eve r  de f l ec t ion  m a y  be  m e a s u r e d  in d i f fe ren t  w a y s  in o rde r  to r e p r o d u c e  the 

s a m p l e  t opog raphy .  A con t ro l l e r  regu la tes ,  co l lec t s ,  and  p r o c e s s e s  the  data ,  and  dr ives  the  p i e z o  

0167-5729/99/$ - see front matter ~) 1999 Elsevier Science B.V. All rights reserved 
PII: S0167-5729(99)00003-5 
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scanner. The controller consists of a variable number of A/D converters that receive data from the 
detection system of cantilever deflections, some D/A converters that give signals to the piezo, and an 
interface with a computer that stores data. 

AFM cantilevers are usually made out of silicon or silicon nitride. They have two shapes: rectangular 
and "V"-shaped. The cantilever back face (the face that is not in contact with the sample) is usually 
coated with a metallic thin layer (often gold) in order to enhance reflectivity. This is necessary in 
liquids, where the reflectivity of silicon nitride is much reduced. 

The most common methods to detect cantilever deflections are the optical lever method, the 
interferometric method, and the electronic tunneling method. The optical lever method is the most used 
one, since it is the most simple to implement. It consists in focusing a laser beam on the back side of the 
cantilever and in detecting the reflected beam by means of a position sensor, that is usually a quartered 
photodiode. Both cantilever deflection and torsion signals may be collected. In the interferometric 
method, a laser beam focused on the cantilever interferes with a reference beam and the deflections are 
revealed by the variation of the interfering beam intensity. Finally, in the electronic tunneling method, 
the tunneling current between a metallic tip and the side of the cantilever that does not face the sample 
is revealed. Hence, the cantilever has to be conductive or coated with a conductive material. This 
method, employed in the early AFM, has several problems. First, the interactions with the metallic tip 
next to the cantilever are comparable to those with the sample. Furthermore this method does not work 
in liquids, and when used in air, contaminants accumulate between the cantilever and the tip, rendering 
the tunneling unstable. 

The sample is scanned by means of a piezoactuator, that is able to perform minimal displacements 
of the order of 1 A with high precision up to displacements of the order of 100~tm. The piezo- 
electric actuators employed for atomic force microscopy are cylindrical tubes of different dimensions 
with an inside electrode, usually grounded, and an outside electrode, usually segmented in four 
quadrants. Unfortunately, the dependence of the displacement of piezo on the applied voltage is 
hysteretic and affected by creep, that is a delay effect depending on temperature. Because of creep, 
almost the entire displacement is performed at the beginning, but a little fraction is done later with a 
logarithmic time dependence. Efforts to eliminate these non-linearities follow four different 
approaches: 

1. A posteriori calculation of non-linear deformations due to hysteresis and creep [2]. 
2. Independent measurement of piezo displacements with two different techniques, e.g., capacitive 

technique (the two plates of a capacitor are mounted one on the piezo and the other fixed on the 
support and the displacements can be calculated on the basis of capacitance variations) [3,4] and 
interferometric technique (the displacement of the interference fringes between a laser beam 
reflected by the piezo and a reference beam is measured) [5,6]. 

3. Use of electrostrictive transducers [7]. 
4. Charge-drive technique, which consists in driving the piezo by controlling the charge instead of the 

potential [8]. This may be achieved by inserting a capacitor between the amplifier and the piezo 
[9, 101. 

AFM is able to acquire force-distance curves on every kind of surface and in every kind of 
environment, with high lateral (25 nm) [11], vertical (0.1 A) and force (1 pN) [12] resolution. The entire 
force-distance curve can be collected. Moreover, force measurements can be correlated with 
topography measurements. Interacting surfaces can be reduced to 10 × 10nm. The AFM is the only 
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tool able to measure the interactions between nanometer sized surfaces, allowing local forces and 
sample properties to be compared. 

When acquiring force-distance curves, the piezo must be ramped along the Z axis, i.e., the axis 
perpendicular to the surface. There are two principal modes of acquisition of force-distance curves. In 
the first mode, called the static mode, the sample is displaced along the Z axis in discrete steps and the 
variations in cantilever deflection are collected, as indicated in Section 1.2. In the second mode, called 
the non-contact mode, the cantilever is vibrated by an extra piezoelectric transducer while the sample is 
approached and withdrawn, and the amplitude or the resonance frequency of the cantilever oscillations 
are collected as a function of tip-sample distance. The principles of this mode of acquisition are 
introduced in Section 1.5. 

The study of surface interactions can be performed with several other tools [13, 14]. Between all 
these tools the surface force apparatus (SFA), invented by Israelachvili [15] in 1978, is the leading 
instrument in surface force measurements. It contains two curved molecularly smooth surfaces of mica 
whose separation can be measured by use of interferometric techniques. The distance between the two 
surfaces is controlled by means of a piezoelectric tube and the force is measured by expanding or 
contracting the piezotube by a known amount while measuring optically the movement of the surfaces. 
Any difference between the two values, when multiplied by the stiffness of the spring separating the 
surfaces, gives the force difference between the initial and final position. Measurements may be carried 
out in liquid. The SFA has a vertical resolution of 0.1 nm and a force resolution of 10 nN [15]. The SFA 
employs only surfaces of known geometry, thus leading to precise measurements of surface forces and 
energies. Although there is a considerable overlap in the force measuring capabilities of the AFM and 
the SFA, we would like to point out several differences. 

1. Interacting surfaces in AFM are 104-106 times smaller than those employed in SFA, but in AFM the 
shape of the surfaces is unknown. 

2. When the substrates to be employed are not transparent, the interferometric technique cannot be 
used to measure forces (see Ref. [16]). 

3. The SFA needs molecularly smooth samples, and therefore it can deal only with mica surfaces or 
thin layers of materials adsorbed on mica. 

4. The SFA cannot characterize indentation or topography. 
5. The viscous force on a spherical particle scales with the square of the particle radius. Therefore with 

an AFM, measurements can be performed at speeds 10 4 times greater while maintaining the same 
viscous force to surface force ratio [17]. 

6. Since the interacting surfaces are smaller, and the probability of trapping a contaminant particle is pro- 
portional to the square root of the interacting surfaces, the AFM is less subject to contamination [17]. 

The first study on force-distance curves acquired with an AFM, concerning the characterization of 
surface forces on LiF and graphite, dates back to 1988 [18]. The first works trying to interpret force- 
distance curves and related information appeared in 1989-1990. Since the first experiments, it has 
become clear that, when force-distance curves are acquired in air, meniscus forces exerted by thin 
layers of water vapor dominate any other interactions. Such forces can be eliminated by working in a 
controlled atmosphere or in a liquid environment. 

In 1991 several studies of force-distance curves in liquids were performed, both theoretically and 
experimentally. Moreover, Mizes et al. [19] performed the first direct measurement of the spatial 
variation of adhesion. 
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Since then, two different research lines have characterized the research on force-distance curves: on 
one hand, the study of different interactions in several environments, on the other, the "mapping" of 
such interactions, drawn from force-distance curves, in order to distinguish materials with different 
physico-chemical properties (a kind of "surface spectroscopy"). 

In 1994, a further technique was introduced [20]. This technique employs functionalized tips, i.e., 
tips covered with particular molecules that selectively adhere to other, in order to study specific forces 
by means of force-distance curves. 

1.2. Relation between A F M  force-d is tance  curves and t ip -sample  interaction force 

An AFM force-distance curve is a plot of t ip-sample interaction forces vs. t ip-sample distance. In 
order to obtain such a plot, the sample (or the tip) is ramped along the vertical axis (Z axis) and the 
cantilever deflection 6c is acquired. The tip-sample force is given by Hooke's law: 

F = -kcrc.  (1.1) 

The distance controlled during the measurement is not the actual t ip-sample distance D (Fig. 1), but 
the distance Z between sample surface and the rest position of the cantilever. These two distances differ 
because of cantilever deflection 6c and because of the sample deformation 6s. These four quantities are 
related as follows: 

D = Z - (60 + 6s). (1.2) 

Since one does not know in advance the cantilever deflections and the sample deformations, the only 
distance that one can control is the Z distance, i.e., the displacement of the piezo. Therefore, the raw 
curve obtained by AFM should be called "force-displacement curve" rather than "force-distance 
curve". This latter term should be employed only for curves in which the force is plotted versus the true 
t ip-sample distance, that has been previously calculated from raw data. Such a distinction is used in 
this review. When not referring to the specific type of plot employed, the term "force-distance curve" 
is used. 

An AFM force-displacement curve does not reproduce tip-sample interactions, but is the result of 
two contributions: the tip-sample interaction F(D) and the elastic force of the cantilever, Eq. (1.1). 
Such a result can be intuitively understood by means of the graphical construction shown in Fig. 2. 

cantilever 

, Z 

D 
i i 

Fig. 1. The tip-sample system. D is the actual tip-sample distance, whereas Z is the distance between the sample and the 
cantilever rest position. These two distances differ because of the cantilever deflection 6, and because of the sample 
deformation 6~. 
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1 

f~' 0 

fb' 

Fig. 2. Graphical construction of an AFM force-displacement curve. In panel (a) the curve F(D) represents the tip-sample 
interaction and the lines 1, 2, and 3 represent the elastic force of the cantilever. At each distance the cantilever deflects until the 
elastic force equals the tip-sample force and the system is in equilibrium. The force values f , ,  fr,  and f .  at equilibrium are 
given by the intersections a, b, and c between lines 1, 2, and 3 and the curve F(D). These force values must be assigned to the 
distances Z between the sample and the cantilever rest positions, i.e., the distances c~, /3, and "7 given by the intersections 
between lines 1, 2, and 3 and the horizontal axis. This graphical construction has to be made going both from right to left and 
from left to right. The result is shown in panel (b). The points A, B, B ~, C, and C' correspond to the points a, b, b', c, and c' 
respectively. BB 1 and CC are two discontinuities. The origin O of axis in panel (b) is usually put at the intersection between 
the prolongation of the zero line and the contact line of the approach curve. The force f., eventually coincides with the zero 
force. 

In Fig. 2(a) the curve F(D) represents the tip-sample interaction force. For the present, since no 
surface force has been introduced yet and for the sake of simplicity, F(D) was chosen to be the 
interatomic Lennard-Jones force, i.e., F(D)= - A / D  7 + B/D 13. By expressing tip-sample forces by 
means of an interatomic Lennard-Jones force, only a simple qualitative description of the mechanisms 
involved in force-displacement curves acquisition can be provided. In particular, the attractive force 
between surfaces actually follows a force law - D  -n with n _< 3 (and not n = 7) and the repulsive part 
of the force is much more complex than the one modeled by the Lennard-Jones force. In Section 2 we 
treat this in detail. The lines 1-3 represent the elastic force of the cantilever, Eq. (1.1). In panel (b) of 
Fig. 2 the resulting AFM force-displacement curve is shown. At each distance the cantilever deflects 
until the elastic force of the cantilever equals the tip-sample interaction force, so that the system is in 
equilibrium. The force values at equilibrium f,,, fb, f,~ are given by the intersections a, b and c between 
lines 1-3 and the curve F(D), respectively. These force values must not be assigned to the distances D 
at which the lines intersect the curve F(D), but to the distances Z between the sample and the cantilever 
rest positions, that are the distances c~,/3, and 7 given by the intersections between lines 1-3 and the 
horizontal axis (zero force axis). Going from right to left, i.e., approaching to the sample, the approach 
curve is obtained. Making the same graphical construction from left to right, i.e., withdrawing from the 
sample, gives the withdrawal curve. The result is shown in panel (b) of Fig. 2. The points A, B, B', C, 
and C' correspond to the points a, b, b', c, and c', respectively. 

Let us now give an analytical expression for the force-displacement curves, following the derivation 
of Hao et al. [21]. The cantilever-sample system can be described by means of a potential Utot that is 
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the sum of three potentials: Ucs(D), U~(6c), and Us(~5~). U~(D) is the interaction potential between the 
tip and the sample, e.g., the Lennard-Jones potential. U~(6~) is Hooke's elastic potential of the 
cantilever. U~(G) is the potential that describes the sample deformation. Sample deformations are 
discussed in detail in Section 2. For the present derivation, the sample deformation is described by the 
Hooke's law: 

= ½kc( c) 2, 
(1.3) 

Us(~s) = lks(~s) 2, 

in which kc and k~ are the cantilever and sample elastic constants. Usually the interaction force can be 
written as 

OUc~ C 
F - -  0 D -  D" '  (1.4) 

in which C and n depend on the type of forces acting between the tip and sample. The force expressed 
in Eq. (1.4) takes into account only the attractive part of the interaction, i.e., only the interaction prior to 
contact. 

The relation between Z and ~5~ can be obtained by forcing the system to be stationary: 

OUto~ _ OUtot _ O. (1.5) 
0(6 ) 0(6c) 

Since OUc~/O(G) = -OUc~/O(D) (see Eq. (1.2)), we obtain 

k~ 6 
" ks 

(1.6) 
C 

k c 6 c =  
( Z - 6 c  - 

Hence 

C 
kc6c - (1.7) 

(z  - f l6c7 '  

in which /3 = (1 + k~/k~). From Eqs. (1.6) and (1.7) both 6~ and Z can be determined from the 
measured value of 6c as functions of the elastic constants k~ and ks. Hence the measured force-  
displacement curve (panel (b), Fig. 2) can be converted into the force-distance curve (panel (a), Fig. 2), 
subject to the assumptions embodied in Eqs. (1.3) and (1.4). 

1.3. Differences between approach and withdrawal curve 

In panel (b) of Fig. 2 two characteristic features of force-displacement curves can be noted: the 
discontinuities BB t and C U  and the hysteresis between approach and withdrawal curve. These features 
are due to the fact that in the region between b' and c' (panel (a), Fig. 2) each line has three intersections 
and hence three equilibrium positions. Two of these positions (between d and b and between b' and c) 
are stable, while the third position (between c and b) is unstable. During the approach phase, the tip 
follows the trajectory from d to b and then "jumps" from b to b' (i.e., from the force value fb tO fh,). 
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During retraction, the tip follows the trajectory from b' to c and then jumps from c to c t (i.e., f r o m f  to 
~.,). These jumps correspond to the discontinuities BB t and CC' in panel (b) of Fig. 2, respectively. 
Thus, the region between b and c is not sampled. The difference in path between approach and 
withdrawal curves is usually called "force-displacement curve hysteresis". The two discontinuities in 
force values are called "jump-to-contact" in the approach curve (BB t in panel (b) of Fig. 2) and "jump- 
off-contact" in the withdrawal curve (CC' in panel (b) of Fig. 2). 

Let us return to Eq. (1.5), that is the condition for Utot to be stationary. For the system to be in stable 
equilibrium, we must h a v e  02Utol/O(6c) 2 > 0, i.e., 

k~. 1 
i-7 > nc (z (1.8) 

in which kc//3 is referred to as the effective elastic constant. 
If the force gradient is larger than the effective elastic constant, the cantilever becomes unstable and 

"jumps" onto the surface. This is the jump-to-contact discontinuity. From Eqs. (1.7) and (1.8) the 
cantilever deflection (6c)jtc and the t ip-sample distance Djtc at which the jump-to-contact occurs can be 
determined: 

,,,~ C 
(6c)it~ = (n/3)"kc' (1.9) 

These are the deflection and the distance of the point b in panel (a) of Fig. 2 and depend only on the 
attractive part of the interaction, Eq. (1.4). Since the repulsive part of the interaction has not been 
modeled yet, it is not possible to give the deflection and the distance of the point b ~ in the same figure. 
From Eq. (1.9) it is possible to calculate C and/3 o n c e  ((~c)jtc and Djtc are known. These equations are 
valid for any kind of attractive force and are adapted to the two main attractive forces, i.e., Van der 
Waals and hydrophobic (see Sections 6.2 and 6.6). No similar expression can be found for the jump-off- 
contact, since, in this case, sample deformations and contact elastic theories reviewed in Section 2 
actually determine both the distance and the force. 

The slope of the lines 1-3 in panel (a) of Fig. 2 is the elastic constant of the cantilever k~. Therefore, 
using cantilevers with high k~, the unsampled stretch b-c becomes smaller, the jump-to-contact first 
increases with kc and then, for high kc, disappears. The jump-off-contact always decreases, so that the 
total hysteresis diminishes with k~. When k~ is greater than the greatest value of the t ip-sample force 
gradient, hysteresis and jumps disappear and the entire curve is sampled. Fig. 3 shows the force-  
displacement curves that would be obtained with three different cantilevers of k~ = 0.105N/m, 
k~2 = 0.06N/m, and kc3 = 0.04N/m and with an interatomic Lennard-Jones force (A = 1 0 - 7 7 j m  6, 
B • 10 134 Jm12). Once again, since a Lennard-Jones interaction is used, the presented dependence has 
only a qualitative meaning. The hysteresis is large for k~3, decreases for k~2, and finally the jumps 
overlap in the curve acquired with k¢l. 

Fig. 4 shows the dependence of jump-to-contact distance and jump-off-contact distance on the 
elastic constant of the cantilever, and Fig. 5 shows the same dependence for the jump-to-contact and the 
jump-off-contact forces. Both graphs have been obtained using a Lennard-Jones interaction with 
A = 10 77 Jm6, B = 10-134jml2 .  

In order to obtain complete force-displacement curves one should employ stiff cantilevers which, on 
the other hand, have a reduced force resolution. Therefore it is necessary to reach a compromise. In 
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"-.k¢,=O.105 N/m F ( Z )  
k~2=0.06... N/m '-:.. 

• .. ". 

k~=0.04 N / ~ , , ,  " . .  '.:. 

-..'-..'.444 .. , 1 
":. ". 4.4." i * i 

". " % i ". ". 4~4 ~' 4 

D 
Z 

Fig. 3. Force--displacement curves (broken lines) obtained with three cantilevers of different elastic constant for kc >> ks. The 
continuous line is the tip-sample interaction, modeled with a Lennard-Jones interaction with A = 10  -77 J m  6, B = 10 134 jml:. 

E e.. 

0.45 

0.35 

0.25 

0.15 

o jump-off-contact distance 

• jump-to-contact distance 

b l i i i i i i i ; 8  L I I I. I I I i i~  
.04 0.06 0. 0 1 0 12 

k (N/m) 

Fig. 4. Dependence of jump-to-contact and jump-off-contact distances on the elastic constant of the cantilever. The tip- 
sample interaction has been modeled with a Lennard-Jones interaction with A = 10 -77 Jm 6, B = 10 -134 Jm 12. 

early AFMs, the cantilevers used for force-displacement  curves measurements were tungsten wires, 
curved at one end, with high elastic constants (> 1 N/m) and with large radii of  curvature (> 100 nm). 
The achieved force resolution was usually of  the order of  hundreds of  pN so that the details of  the t ip -  
sample interaction could hardly be seen. Later, less stiff cantilevers with smaller radii of  curvature have 
been employed,  increasing the resolution up to nearly 10 pN. 

Recently Aoki et al. [12] proved that the force resolution of  the AFM can be increased to 0.1 pN. 
They employed home-made cantilevers with a spring constant of  the order of  10 -4 N/m. Such flexible 
cantilevers undergo large brownian motions and hence need to be stabilized by feedback forces. In this 
case, the feedback force is exerted by means of  laser radiation pressure. Besides a first laser beam 
aimed to the deflections detection, a second laser beam is focused on the cantilever. The intensity of  this 
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jump-off-contact 
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0.04 0.06 0.08 O, 1 O. 12 
k (N/m) 

Fig. 5. Dependence of jump-to-contact and jump-off-contact forces on the elastic constant of the cantilever. The t ip-sample  
interaction has been modeled with a Lennard-Jones interaction with A = 10 -77 Jm 6, B = 10 134 jm12. 

second laser beam is varied with a fast feedback loop, in order to keep constant the deflection of the 
cantilever. 

1.4. The three regions of  the force-displacement curve 

Both approach and withdrawal force-displacement curves can be roughly divided in three regions: 
the contact line, the non-contact region and the zero line. 

Zero lines are obtained when the tip is far apart from the sample and the cantilever deflection is 
nearly zero (on the fight side of the point C I for both curves in Fig. 2). When working in liquid, these 
lines give information on the viscosity of the liquid. 

When the sample is pressed against the cantilever the tip is in contact with the sample and D = 0. 
Therefore, from Eqs. (1.2) and (1.6), the relation between Z and 6c can be obtained: 

kc ks 
kcbc - - - Z .  (1.10) 

kc + k~ 

The corresponding lines obtained in the force-displacement curve are called "contact lines". In panel 
(b) of Fig. 2 they are represented by the lines B'A and CA. If the sample is much stiffer than the 
cantilever, the cantilever deflection 6c equals sample movement Z, whereas if k~ << kc, 6c ~- (k~/kc)Z. 
Thus, the contact lines provide information on sample stiffness. 

The origin of force-displacement curves O is usually put at the intersection between the prolonga- 
tion of the zero line and the contact line of the approach curve. Referring to panel (b) of Fig. 2, the 
distances 0/3 and O7 are called "jump-to-contact distance" and "jump-off-contact distance". The 
adhesion work equals the area between the negative part of the withdrawal curve and the Z axis. The 
hysteresis of the curve is the difference between the adhesion work and the area between the negative 
part of the approach curve and the Z axis. 

The most interesting regions of force-displacement curves are the two non-contact regions, 
containing the jump-to-contact and the jump-off-contact. The non-contact region in the approach 
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curves gives information about attractive or repulsive forces before contact. In particular, the maximum 
value of the attractive force sampled prior to contact equals the pull-on force, i.e., the product of jump- 
to-contact cantilever deflection and k~. 

The non-contact region in withdrawal curves contains the jump-off-contact. The pull-off force, i.e., 
the product of jump-off-contact cantilever deflection and kc, equals the adhesion force, F~,u. In order to 
relate the tip and sample surface energies (~'t and %) and the adhesion force it is necessary to evaluate 
the deformations and the contact area of the sample. This can be done by means of different theories, 
reviewed in Section 2. 

1.5. Non-contact mode 

The non-contact mode was introduced by Martin et al. [22]. It consists of exciting the cantilever at a 
frequency v = ~o/27r while the sample is ramped along the Z axis. The cantilever may be modeled as a 
harmonic oscillator with effective mass m* and spring constant kc. The effective mass m* is given by 
m* = mc + 0.24mt, where m~ is the mass of the cantilever and mt is the mass of the tip. Hence, when the 
tip is far away from the surface, the equation of motion of the cantilever is 

, d2fc(t) dfc(t) 
m d t ~ + ~ / ~ t - + k c f ~ ( t )  = F0 exp (kot), (1.11) 

in which "~ is the damping coefficient and F0 exp(Lot) is the exciting force exerted by the driving piezo 
on the cantilever. Solving (1.11), the "free" amplitude of vibration as a function of frequency is 
obtained: 

F0 ~o0/~ 
- - -  ( 1 . 1 2 )  

a(~) = 6c(t) exp[-i(~Jt + q~)] 7~Vo ~/1 + Q0[(w/wo) - (w,,/w)] 2' 
v x t ] $  

in which ~:o --= V ~ / m *  is the resonance frequency and Q0 = m'w0/7 is the quality factor. When the 
cantilever is near the sample surface, surface forces modify the cantilever vibration and the force 
F[D + 6c (t)], where D is the distance between the sample and the mean position of the cantilever, is to 
be added in the second term of Eq. (1.11). The general solution of such an equation cannot be obtained 
analytically, even when the force law is known. A convenient approximation is the small amplitude 
approximation, in which the surface force can be written in the form (we follow the derivation by 
Fontaine et al. [23]): 

dF 
F[D + 8~(t)] = F(D) + ~8~( t ) .  (1.13) 

Using such an approximation, Eq. (1.12) becomes 

A(~,D) = F o CJo(D)/od (1.14) 

Two V/1 + Q(D)2[(w/w~(D)) - (w~,(D)/w)] 2' 

with 

• /  1 d F  ( 1 . 1 5 )  Jo(D) = ~Oo 1 - k~-~(D) and O(D) ---- Q0 ~°~(D) 
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Fig. 6. Approach curves in the dynamic mode (operating frequency 328 kHz). Circles correspond to a Teflon surface and 
triangles to a gold surface. The squares correspond to mica and the vibration amplitude has been multiplied by 10 for the sake 
of comparison (reprinted with permission from [23]). 

Dynamic force-distance curves are characterized by a horizontal line at the free amplitude, and a 
contact line at zero amplitude (when the cantilever is in contact with the sample it is no more longer to 
vibrate), with a region of decreasing amplitude in between, as shown in Fig. 6. 

Non-contact force-distance curves are much less used than static force-distance curves. It is 
difficult to obtain a good quality factor in liquids. Furthermore, measurements are affected by a lot of 
artifacts (see Ref. [23]). Hence, in the following, only few experiments performed in this mode are 
presented. 

2. Theories of contact region 

From the contact lines of force-displacement curves it is possible to draw information about the 
elasto-plastic behavior of materials. 

Let us first consider an ideally elastic material. As shown in panel (a) of Fig. 7, during the approach 
curve, i.e., from O to A, the tip goes into the sample of a depth ~5, causing a deformation. During the 
withdrawal the tip goes back from A to O, and since the sample is elastic, it regains step by step its own 
shape, exerting on the tip the same force. Hence loading and unloading curves, i.e., the approach and 
withdrawal contact lines, overlap. 

If the sample is ideally plastic (panel (b) of Fig. 7), it undergoes a deformation during the loading 
curve, and when the tip is withdrawn, it does not regain its own shape and the load decreases, whereas 
the penetration depth stays the same. 

Most samples have a mixed behavior. Hence loading and unloading curves seldom overlap. In 
particular, at a given penetration depth, the force of the unloading curve is lesser than the force of the 
loading curve (see panel (c) of Fig. 7, where a force-displacement curve is shown, whereas the curves 
in panels (a) and (b) of Fig. 7 are deformation vs. load curves). The difference between the approach 
and the withdrawal contact lines is called "loading-unloading hysteresis". 
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Fig. 7. Load vs. penetration depth curves for an ideally elastic material (panel (aD and an ideally plastic material (panel (b)). 
The force-displacement curve for an elasto-plastic material is shown in panel (c). H' is the "zero load plastic indentation", 
i.e., the penetration depth at which the force of the unloading curve equals zero. H is the "zero load elastic deformation", i.e., 
the distance the sample regains. 

The penetration depth H '  at which the force of  the unloading curve equals zero is called "zero  load 

plastic indentat ion".  The distance H the sample regains is the "zero  load elastic deformat ion" .  Both 

distances are determined by use of  the tangent to the curve in A, in order to neglect the influence of  the 
variations of  contact area during the unloading process. 

In the following we neglect the plastic deformations and review the theories dealing with elastic 
cont inuum contact mechanics,  in which the tip and sample are assumed to be continuous elastic media.  

The geometry  of  a spherical tip in contact with a fiat surface is indicated schematical ly in Fig. 8. Eq. 

(1.10) reveals that, along the contact lines, Z and ~c are proportional and that once the elastic constant 
of  the cantilever is known, the elastic constant of  the sample ks can be determined f rom their 

proportionality ratio. The elastic constant o f  the sample ks depends on contact area, Young modulus E 
and Poisson r a t i o / ,  via 

E 
m ks = 2a 1 - / , 2 '  (2.1) 

in which a is the contact radius [24]. 

?Z 

Fig. 8. Deformation of an elastic sphere on a flat surface following Hertz and JKR theory. The profile of the spherical tip in 
the DMT theory is the same as in the Hertz theory. F is the loading force, R the radius of the sphere, y the distance from the 
center of the contact area, 6 the penetration depth, aHert z and ajnR are the contact radius following the Hertz and the JKR 
theories. 
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In order to know the dependence of the contact radius and the force on the penetration depth it is 
necessary to make some assumptions. The different theories of such phenomena are summarized below. 

2 .1 .  H e r t z  a n d  S n e d d o n  

Hertz theory [25] dates back to 1881. It takes into account neither surface forces nor adhesion. The tip 
is considered as a smooth elastic sphere, while the sample is a rigid flat surface. For a sphere of radius R 
pressed onto a flat surface with a force F, the adhesion or pull-off force Fad, the contact radius a, the 
contact radius at zero load a0, the deformation 6 of the spherical tip, and the pressure P are given by 

Fad = 0, (2.2a) 

a0 = 07 

(2.2b) 

(2.2c) 

and 

a 2 F 

- R - K a '  (2.2d) 

3 K a y / - 1  - x 2 3F~/1 - x 2 
P ( x )  - 27rR - -  27ra 2 , (2.2e) 

in which x = y / a ,  y is the distance from the center of the contact circle, and the reduced Young 
modulus K is given by 

K - 4  + Ei J (2.3) 

In Eq. (2.3) E, El, t, and u/are the Young modulus and the Poisson ratios of the flat surface, i.e., the 
sample, and of the indenter, i.e., the tip. The geometry of the deformed sphere-substrate contact is 
indicated in Fig. 8. 

In the limit of high loads or low surface forces, an AFM experiment can follow the Hertz theory. In 
most cases, however, the AFM tip is stiffer than the sample, and one has to consider the deformations of 
the flat sample, or in other cases, those of both the tip and the sample. Hertz theory cannot be used to 
calculate sample deformations by assuming a rigid tip. When a rigid spherical punch on an elastic 
surface is considered, Sneddon analysis has to be employed [26]. In Sneddon analysis [27] the elastic 
deformation is given by a transcendental equation that can be computed numerically. The force F 
exerted by the punch on the surface and the surface deformation 6 are given by 

= (a2 + R2) k . - R - ~ - a J  - 2 a R  

and 

(2.4a) 

1 (R + a'] (2.4b) 
6 = ~ a l n \ R _  a J "  
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and 

Deformation and force can be computed for a generic axisymmetric punch: 

1 

l f ' ( x )  dr, 
6 = v/1 _ x 2 

0 

(2.5a) 

1 

F =  Ka j x/l _ x dx, (2.5b) 

0 

in which f ( x )  is the function describing the profile of the punch. Solutions for common geometries can 
be found in [27]. 

Simply summing Hertz and Sneddon deformations, i.e., tip and sample deformations, whenever 
surface forces are negligible, one can obtain the total deformation in an AFM measurement. When 
surface forces must be considered, one of the four theories described in Sections 2.2 and 2.3 has to be 
employed. 

2.2. Bradley, Derjaguin-Miil ler-Toporov and Johnson-Kendal l -Roberts  

We present here three theories that take into account the effect of surface energy on the contact 
deformation. The Bradley analysis [28] considers two rigid spheres interacting via a Lennard-Jones 
potential. The total force between the spheres is 

- 3 ~ - \~/  j ,  (2.6) 

in which z0 is the equilibrium separation, R the reduced radius of the spheres, i.e., R = 
(1/Rj + l/R2) 1, and W is the adhesion work at contact. 

In Derjaguin-Mfiller-Toporov (DMT) theory [29] the elastic sphere is deformed according to Hertz 
theory, but in addition to the external load F, also the forces acting between the two bodies outside the 
contact region are taken into account. These forces alone produce a finite area of contact. If an external 
load is applied, the area of contact is increased. If a negative load is applied, the contact area diminishes 
until it reaches zero. At this point the pull-off force reaches its maximum value. The corresponding 
expressions for the quantities of Eqs. (2.2a)-(2.2e) are found by minimizing the sum of the elastic and 
of the surface energy: 

Fad = 27rRW, (2.7a) 

a = ~/(F + 27rRW) R, (2.7b) 

~ 2/~-~W 
ao = V ~ - R - ,  (2.7c) 

a 2 
z - -  ~5 R '  (2.7d) 
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and 

3 K a v / 1  - x 2 3 F x / 1  - x 2 

P ( x )  - -  27rR - -  27ra 2 (2.7e) 

DMT theory is applicable for systems with low adhesion and small tip radii. 
Johnson-Kendall-Roberts  (JKR) theory [30] neglects long range forces outside the contact area and 

considers only short range forces inside the contact region. With JKR assumptions, the corresponding 
equations of Eqs. (2.2a)-(2.2e) are: 

3 
F~,d = - z r R W ,  ( 2 . 8  a)  

2 

(2.8b) 

ao = ~ 2W, (2.8c) 

and 

a2 2 ~  

R 3 
2.8d) 

_ x2 _ ~ 3 V  2__~a. 1 (2.8e) 
3 K a  

P(x )  = v 5  v/1 - x2 

The JKR theory behaves hysteretically. During unloading, a neck links the tip and sample (see Fig. 8), 
and contact is abruptly ruptured at negative loads. When separation occurs, the contact radius has fallen 
to a~ = 0.63a0. 

The JKR theory is suitable for highly adhesive systems with low stiffness and large tip radii. One 
difficulty with the JKR theory is that it predicts an infinite stress for x = 1, i.e., at the edge of the 
contact area. This unphysical situation arises because JKR theory considers only the forces inside the 
contact area and implicitly assumes that the attractive forces act over an infinitesimally small range. 
These infinities disappear as soon as a finite range force law, e.g., Lennard-Jones potential, is assumed. 

DMT and JKR theories have raised a number of controversial experimental as well as theoretical 
issues after their publication. This controversy persisted from 1971 to 1984, when it was slowly realized 
that the two theories apply to two very different situations. Without citing the numerous publications on 
the controversy, we indicate here the most important works. 

Attard and Parker [31] self-consistently calculated the elastic deformation and adhesion of two 
convex bodies interacting via finite range surface forces, namely an exponential law for repulsive force 
at small separations and a 9 -3  Lennard-Jones law for the attractive forces. Hertz theory is confirmed to 
be suitable for short ranged repulsive forces and large loads, and thus agrees well with the results of 
Attard and Parker for both exponential repulsive forces and Lennard-Jones repulsion. Nevertheless, in 
general, Hertz theory overestimates the deformation caused by a given load. When the adhesive part of 
the Lennard-Jones potential is considered, JKR theory turns out to predict the force-deformation 
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relation very well and also the stress infinities at x = 1 disappear. Comparing the pull-off force with the 
value predicted by JKR theory, when a certain parameter erA, which is a function of surface energies, 
radii of curvature and materials stiffness, is much lesser than one, i.e., for stiff bodies with small surface 
energies and small radii of curvature, DMT value is more accurate than JKR value. 

Mfiller et al. [32] presented a self-consistent numerical calculation abandoning the hypothesis that 
adhesion forces do not alter the hertzian geometry. The result is a continuous transition from the DMT 
to the JKR theory when a single #M parameter is varied. 

Pashley et al. [33] had already introduced a parameter 9~e, which is proportional to the ratio of h, i.e., 
the height of the neck formed when the sphere is under a negative load before detachment, and z0, i.e., a 
typical atomic dimension: 

h , . ,  3 R ~  2 
~p . . . .  (2.9) 

When ~p < 1, i.e., h < z0, surface forces outside the contact area become important and the behavior 
approaches that of the DMT theory. Following the more complete analysis of Mtiller et al. [32] the 
DMT model holds when ~r, < 0.3 (hard solids of small radius and low surface energies) and the JKR 
model holds when ~p > 3 (soft bodies with large radius and surface energies). 

2.3. Maugis 

Maugis theory [34] is the most complete and accurate theory in that it applies to all materials, from 
large rigid spheres with high surface energies to small compliant bodies with low surface energies. The 
full range of material properties is described by a dimensionless parameter A given by 

A = 2.06 3R~W 2 
(2.10) 

z,W- V 
in which z0 is again a typical atomic dimension. This parameter A is proportional to the parameter >M 
introduced by Mtiller et al. [32] (A = 0.4 #M), tO the parameter ~e introduced by Pashley, and to the 
parameter erA introduced by Attard and Parker [31] ( , ~ 0 . 4  ~ ) .  A complete conversion table is 
given by Greenwood [35]. A large A occurs for more compliant, large, and adhesive bodies, whereas a 
small A occurs for small rigid materials with low surface energies. 

In the Maugis theory following the Dugdale model [36], adhesion is considered as a constant 
additional stress over an annular region around the contact area. The ratio of the width of the annular 
region c to the contact radius a is denoted by m. By introducing the dimensionless parameters 

A - -  a ~/TrWR2/K, (2.11a) 

F 
rrWR' (2.1 lb) 

and 

= (2.11c) 
~//rc2WZ R / K 2 ' 
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a set of  parametric equations is obtained. In particular, the corresponding equations to Eqs. (2.2a) and 

(2.2d) are: 

= A 2 - 4 A A x / ~ m ~ -  - 1,  (2.12) 
3 

4A2A F 
/ - m  + 1 + - 1 + (m - 2/arctg m2,/2 - 1 

2 k 
- 1 a r c t g ~ ]  = 1, 

(2.13) 

and 

i~ = ~3 _ XAZ(v~m2 _ 1 + m 2 arc tgv~m 2 - 1). (2.14) 

Eqs. (2.12)-(2.14) form an equation system which enables the calculation of m, F and 6(A) if A (6) is 
given. Eq. (2.12) reduces to Eq. (2.7d) for A -~ 0 (DMT) and to Eq. (2.8d) for A ~ vc (JKR). 

The adhesion force Fad given by Eq. (2.14) is 27rRW for A --~ 0 (DMT) and 1.57rRW for A --~ 
(JKR). 

The results presented above are displayed in Fig. 9, showing the dependence of i] on 6 and the 
dependence of P on S. In panel (a) it is evident that the radius of contact at zero penetration is zero only 

I 
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Fig. 9. The dependence of A on 8 (panel (a)) and the dependence of/~ on 6 (panel (b)) as functionals of A calculated using 
Maugis theory. The JKR [30] and the DMT [29] limits are indicated. A, F, and S are the dimensionless contact radius, force 
and penetration depth given by Eqs. (2.1 l a)-(2.1 l c). 
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in the DMT limit. For A > 1 and 6 < 0, there are two values of A (panel (a)) and of F" (panel (b)) for 
each ~5 and the behavior is hysteretic. 

Following Maugis theory, there is a continuous transition from the DMT deformation vs. load curve 
to the JKR deformation vs. load curve. This means that, at a certain applied load F, the deformation of 
the sample and the contact area, and hence the relation between k~ and E (see Eq. (2.1)) can be exactly 
known only if the surface energy, the tip shape and the stiffness of the sample are exactly known. In 
other words, provided the exact value of the elastic constant of the cantilever, for each value of load, 
one can calculate k~ from load/unloading curves, but in order to relate k~ to Young modulus E, one 
needs to know the contact radius a and hence the deformations ~5 of the sample. This is not possible as 
the deformation depends also on surface energies, and when deducing surface energies from pull-off 
forces, one has also to know the Young modulus E, i.e., the quantity one wants to draw from the 
experiments. Quite exact values of E can be obtained only when the materials or the experimental 
conditions approach the Hertz-Sneddon limit, and hence the measure of the Young modulus is usually 
obtained from the high load part of the load curve in order to exclude the influence of surface energies. 
Furthermore, in AFM measurements, E, R, and W are the local values of the Young modulus, the radius 
of curvature and the surface energy, and not the bulk macroscopic values. In 1997, Johnson and 
Greenwood [37] constructed a map of the elastic behavior of bodies, shown in Fig. 10, permitting to 
find the theory to be applied depending on the material properties. The authors observe that AFM 
experiments usually fall in the Maugis region. 

At our knowledge, the only experimental verification of the Maugis theory is that of Lantz et al. [38]. 
In this work, the contact area between a Pt/Ir coated Si tip and graphite is deduced from current, 
friction, and normal force measurements. The experimental data are shown to follow a Maugis model 
rather than an hertzian law. Measurements are repeated for a Si tip on NbSe2. 

Finally, all the theories reviewed in this section are continuum elastic theories and hence assume 
smooth surfaces with no plastic deformation and no viscoelastic phenomena. 
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Fig. 10. Map of the elastic behavior of bodies. P~/P is the ratio between the adhesive part of the load and the total load. When 
the adhesion is negligible, bodies fall in the Hertz limit (approximately F > 103 7rWR). 61 is the elastic compression, and h0 is 
an equilibrium distance. When ~51 << h0, the bodies are rigid and follow Bradley theory (A < 10 3). 6~ is the deformation due 
to adhesion. When the adhesion is small the behavior of materials is described by the DMT theory (approximately 
10 2 < A < 10-1), whilst JKR theory predicts the behavior of highly adhesive bodies (approximately A > 10 x). The Maugis 
theory suits to the intermediate region (approximately 10 l < A < 10 l) (adapted from [37]). 
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2.4. Artifacts 

One of the most striking artifacts concerning contact lines is due to the piezoelectric actuators 
hysteresis and creep [7]. As a matter of fact, in order to acquire force-displacement curves sequentially, 
the piezo actuator has to be ramped repeatedly along Z. Hysteresis and creep affect the zero line of the 
approach curve and the contact line of the withdrawal curve, i.e., the regions near the inversion of 

motion. 
Hysteresis and creep lead to an incorrect determination of displacements. In particular, because of 

creep, the loads in the unloading curve for a given displacement may appear bigger and finally 
overcome those of the loading curve. This unphysical phenomenon is called "reverse path effect". 

Several methods have been proposed in order to compensate for hysteresis and creep effects. To our 
knowledge, the only method applied to force-distance curves is the one that uses lead magnesium 
niobate (PMN) actuators [7] which have less non-linearities when used in a cyclic application. 
However, PMN ceramics are electrostrictive materials for which the strain is proportional to the square 
of the applied field and the displacement is thus independent of the sign of the applied voltage yielding 
only one half the displacement range of a corresponding lead zirconate titanate (PZT) actuator. 
Furthermore, PMN response is much more temperature dependent. 

Aim6 et al. [24] have studied the elastic behavior of viscoelastic materials. For such materials, the 
work of adhesion is a function of the Z scan rate v, i.e., 

W,, = W(1 + ~(T)v"), (2.15) 

in which ~(T) is a function characterizing the material, T is the temperature and n is found to be equal 
to 0.6. This dependence of the adhesion force, when inserted in the equations describing the elastic 
behavior of materials, leads to a dependence of the loading/unloading curves on velocity. Furthermore, 
since the hysteresis changes with the scanning frequency, the slope of the contact lines decreases with 
frequency, even in the case of hard, inorganic, non-viscoelastic surfaces. 

Besides viscoelastic properties, another source of artifacts not accounted for in the elastic continuum 
media equations is surface roughness. Both AFM tips produced by electrochemical etching and tips 
produced through microfabrication techniques have on the surface some small asperities which can 
reach few nanometers in size. In the contact region of the force-displacement curve the effect of 
asperities is twofold. On the one hand, for a given load, the deformation depth is enhanced since the 
actual contact radius is much smaller than the macroscopic tip. On the other hand, the surface 
deformation is smaller than that expected for a single asperity contact since there are multiple contacts 
and the load will be distributed over many points. Cohen [39] has compared the deformations in the 
case of a smooth tip (radius 1 ~tm) and of a rough tip on a flat gold surface. The roughness is described 
as a distribution of hemispherical minitips (radius 2 nm), and the contact is modeled with an hertzian 
law. Deformations due to the rough tip turn out to be larger than the one in the case of a smooth tip. 
Anyway, for forces above 1 ~tN, the slope of the deformation vs. load curve is the same in the two cases, 
since above a certain load, the microasperities are buried and the entire tip surface comes in contact. 

Hob and Engel [40] have shown that the loading/unloading hysteresis is scan-rate dependent. At high 
scan rates the separation between the two contact lines is large. As the scan rate is decreased, this 
separation reaches a minimum after which it increases again. Such a scan-rate dependence is typical of 
stick slip friction and is not consistent with effects arising from electromagnetic forces. The authors 
propose that the friction between the tip and sample makes the cantilever bow forward after the tip 
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comes in contact, resulting in an offset of the contact line. As the tip is retracted, the cantilever bends 
upward, causing an opposite effect in the line. At the turn-around point, the deflection signal jumps 
nearly vertically, as it would be expected when the cantilever turns up from a forward bow. 
Unfortunately, no experiment has been carried out to separate the effects of friction and of scan rate 
dependent hysteresis. 

Haugstad and Glaedfelter [41] have studied the effect of photodiode non-linearities on the contact 
lines of force-displacement curves. The withdrawal contact line is the portion of the force- 
displacement curves with the highest repulsive and/or attractive loads, and hence with high cantilever 
deflections. In turn, this means high displacements of the laser spot on the photodiode. The authors 
prove, experimentally and theoretically, that the difference between the measured contact line and the 
line 6c = Z is a cubic curve whose maximum contribution is about 8% of the total signal. This non- 
linear contribution is related to the features of the photodiode. The measurements are done on a rigid 
material, namely polycrystalline Si3N4, so that sample deformations can be neglected. 

2.5. Experimental results 

The first pioneering work dealing with the determination of materials elasto-plastic properties by 
means of an AFM is that of Burnham and Colton [42]. Using a hertzian analysis, the modulus of 
elasticity has been drawn from the experiments for an elastometer, HOPG graphite, and gold, in rather 
good agreement with literature values. 

Acquiring force-displacement curves on gold, Cohen et al. [43] have shown the effect of 
microasperities on an iridium tip, as indicated in Section 2.4. The same effect has been discussed by 
Blackman et al. [44] pointing out the inadequacy of continuum elastic theories and the need of models 
for atomic-scale contacts. 

Hao et al. [21] have measured the slope of loading/unloading curves for graphite, mica, and stainless 
steel, finding inexplicable results for graphite. The authors account neither for elasticity theory nor for 
microasperities effects. Consequently, they are unable to explain the discrepancy between expected and 
measured values. 

Aim6 et al. [24] have characterized force-displacement curves on rigid and soft polymer films in 
controlled atmosphere. The authors point out several causes of misinterpretation of force-displacement 
curves: the lack of an accurate knowledge of the cantilever stiffness and of the tip size and the difficulty 
in separating viscoelastic, elastic, and plastic effects. Even with these numerous restrictions, AFM 
measurements can lead to a characterization of the film properties. Following the JKR theory and taking 
into account viscoelastic effects (see Section 2.4), a good agreement between theoretical and experi- 
mental values is obtained. 

Thomas et al. [45] have acquired force--displacement curves between a W tip and a gold sample 
covered with a monolayer of docasanethiol. They show that the deformation follows an hertzian model 
for forces smaller than 15 ~tN, but a considerable loading/unloading hysteresis appears for loads of 
about 25 ~tN. 

Weisenhorn et al. [46] have compared load vs. indentation curves on glass, polyurethane, and rubber, 
showing that it is possible to distinguish between two polyurethane layers of different Young's modulus 
(namely 14 and 30 MPa). 

The measurement of elastic properties of biological materials has been pioneered by Tao et al. [47], 
who have measured elastic properties of bones, comparing them with stainless steel and rubber. 
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Radmacher et al. [48] have measured the indentation of an Si3N 4 tip on lysozyme adsorbed on mica. 
A good agreement between Hertz equation for a sphere on a flat surface and experimental data is 
reached (although the formula reported in the text is affected by an error, and it is not clear if the same 
error affects also the fit of the data). What is most important, the authors show the different behavior of 
lysozyme and mica in indentation measurements, thus leading to the possibility of distinguishing the 
two materials throughout the acquisition of force-displacement curves. Later on, Radmacher et al. 
[49], acquiring force-displacement curves on gelatin, have shown that the agreement with Hertz 
equation improves when the tip is modeled as a cone for higher loads and as a sphere for small loads. 
They proved the capability of AFM force-displacement curves to measure the change of gelatin elastic 
properties under various conditions. The gelatin was immersed in pure water, propanol, or mixtures of 
the two, and the measurement of the Young modulus reached a resolution of 0.5 MPa. 

Domke and Radmacher [50] have determined the Young modulus of gelatin layers of different 
thickness. They have verified that the calculated Young modulus depends both on the thickness of the 
medium and on the portion of the contact line used for the calculation. In particular, the Young modulus 
of a thick film (1.1 pm) depends very little on the range of analysis (it goes from 15.9 kPa for cantilever 
deflections in the range 10-30 nm up to 18.5 kPa in the range 170-200 nm). The load-deformation 
curve is well fitted with the hertzian model. In the case of the thin film (<300 nm), the Young modulus 
is 27 kPa in the range 10-30 nm and it is bigger than 1 GPa in the range 170-200 nm. The load-  
deformation curve cannot be fitted with the hertzian model. As a matter of fact, when the tip indents a 
thin film, at high loads the deformation-load curve is influenced by the presence of the rigid substrate, 
that in turn cannot be probed with a thick film. 

Several load-indentation studies have been performed on cells. Ricci and Grattarola [51] have 
explored the possibility of measuring cell height by means of indentation-load curves. No calculation 
is presented for cells elastic modulus. 

Finally, several works have exploited dynamic force-distance curves in order to characterize sample 
elasticity [52, 53]. 

Experiments dealing with the study of elastic properties of materials by means of the AFM have 
shown that the absolute measurement of Young modulus or other elastic properties is not a simple and 
straightforward issue, whereas the comparison of elastic properties of different materials gives quite 
satisfactory results. However, the AFM turns out to be the only instrument able to characterize the local 
elastic properties of materials with high lateral resolution (25 nm) [11]. 

3. Theories of non-contact region 

3.1. Approach curve: jump-to-contact and attractive forces 

The jump-to-contact is one of the important quantities one can measure in a force-displacement 
curve. As discussed in Section 1.3, this discontinuity occurs when the gradient of the tip-sample force 
is larger than the elastic constant of the cantilever. The general expressions of the cantilever deflection 
and the t ip-sample distance at which the tip jumps onto the surface are given by Eqs. (1.9). 

The jump-to-contact may be preceded by a region of attractive (Van der Waals or Coulomb force) 
or repulsive (Van der Waals force in certain liquids, double-layer, hydration, and steric) force. The 
jump-to-contact gives information on attractive forces between the tip and sample. The maximum 
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sampled value of the attractive force equals the jump-to-contact cantilever deflection (~c)jtc times the 
cantilever elastic constant. In order to evaluate such attractive forces it is necessary to know the force 
law and the tip shape. In Section 6 we consider in detail the different forces and the influence of the tip 
shape. 

The onset of a jump-to-contact is predicted by any theory that takes attractive forces into account 
(JKR or Maugis) and is also predicted by numerical calculations [31, 35]. 

In AFM measurements the jump-to-contact instability is governed by the stiffness of the cantilever 
relative to the long-range tip-sample forces. As indicated in Section 1.3, if the cantilever elastic 
constant is bigger than the maximum value of the tip-sample force gradient, then the discontinuities 
virtually disappear. However, jump-to-contact is always present at an atomic scale, even if the 
cantilever can be modeled as an infinitely rigid body. In this case, the jump-to-contact instability is 
governed by the inherent stiffness of the tip and sample materials, related to their cohesive strengths. 
This phenomenon has been demonstrated by Pethica and Sutton [54] by means of calculations 
employing Lennard-Jones potentials and by Landman et al. [55] by use of molecular dynamics (MD) 
simulations. 

Pethica and Sutton [54] have shown that in general it exists a minimum separation ( ~  1-2 ,~) below 
which the surfaces jump in contact irrespective of the rigidity of the holder. This instability is due to the 
fact that, at some small enough separation, the gradient of the surface forces exceeds the gradient of the 
elastic restoring force of the bodies. The instability is irreversible because surface forces have stronger 
separation dependence than does the elastic restoring force. The Lennard-Jones pair potential used by 
Pethica and Sutton is inapplicable to free surface structures. N-body potentials of the embedded-atom 
variety are much more reliable. They do not, however, account for long-range attractive forces, because 
they do not incorporate a Van der Waals term. 

Landman et al. [55] verified the onset of jump-to-contact instability by means of MD simulations and 
compared their results to AFM measurements for a nickel tip interacting with a gold substrate. In MD 
simulations the tip is modeled as a pyramid with an effective radius of curvature of --30 ,~ and the 
sample is made up of 11 layers of 450 atoms per layer. The interatomic interactions governing the 
energetics and dynamics of the system are modeled by means of the embedded-atom method (EAM). In 
the EAM [56], the dominant contribution to the cohesive energy of the material is viewed as the energy 
to embed an atom into the local electron density provided by other atoms of the system. The AFM 
measurements were carried out with a nickel tip with a radius of curvature of ~200 nm and the 
cantilever spring constant is ~ 5 kN/m. The measurements were done under dry nitrogen. 

MD simulation shows the onset of an instability when the tip is at a distance of 4.2 ,~ from the 
sample. This jump-to-contact is associated with a tip-induced sample deformation and the process 
involves large atomic displacements (~2,~) occurring in a time span of ~ 1 ps. When the tip jumps 
onto the surface, the distance decreases from 4.2 to 2.1 ,~. Just after the jump-to-contact, in addition to 
the adhesive contact between the two surfaces, a partial wetting of the tip bottom by Au atoms induced 
by adhesion is observed (panel (a), Fig. 11). Pressure contours reveal that atoms at the periphery of 
the contact area are under extreme tensile stress (-~ 10 GPa), in accord with the JKR theory (panel (b), 
Fig. 11). In the AFM experiment the magnitude of the force and the distance from the sample at which 
the tip begins to deviate from zero are much larger than those predicted by the MD simulation. The 
authors list several causes of these differences: tip dimensions, cantilever elastic constant, neglect of 
long range attractive forces in MD calculations, tip and sample roughness, and the exposure to air of the 
tip and sample. 
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Fig. I 1. Atomic configuration generated by the MD simulation (panel (a)) and calculated pressure contours just alter the 
jump-to-contact (panel (b)) (reprinted with permission from [55]; copyright 1990 American Association for the Advancement 
of Science). 

3.2. Withdrawal curve: jump-of f -contact  and adhesion forces  

The second discontinuity of force-displacement  curves, the jump-off-contact, occurs when, during 
the withdrawal of the sample, the cantilever elastic constant is larger than the gradient of t ip-sample  
adhesive forces. 

As we have already seen in Sections 2.2 and 2.3, the jump-off-contact is related to tip and sample 
surface energies via equations that depend on materials dimensions, stiffness, and adhesion. The jump- 
off-contact force can be deduced from Fig. 9. For an infinitely stiff tip-holder, the pull-off load is given 
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by the horizontal tangent to the deformat ion- load curves in panel (b) of Fig. 9. When the apparatus has 
a finite stiffness, the tangent to the curve in panel (b) of  Fig. 9 with a slope corresponding to the elastic 
constant of the support has to be drawn. It is evident that Maugis theory shows that the pull-off force 
gradually passes from (Fad)JKU = - 3 / 2 7 r R W  to (Fad)DMT = -27rRW as the parameter A, that describes 
tip and sample dimensions, stiffness, and adhesion, decreases. Similar results were obtained by MUller 
et al. [32] and have been confirmed by Greenwood [35]. Hence, measuring the pull-off force is not an 
accurate method to estimate surface energies. Nevertheless, the jump-off-contact shows a wide range of 
adhesive material properties. 

The jump-off-contact deflection and the jump-off-contact distance are always greater than jump-to- 
contact deflection and jump-to-contact distance, respectively. This occurs for several reasons. 

1. During the contact some chemical bonds or adhesive bonds may engender non-conservative forces. 
2. During the contact, the sample deforms, buckles and "wraps"  around the tip, increasing the contact 

area, because of the elastic behavior described in Section 2, but also under the influence of  particular 
t ip-sample  forces (e.g., hydrophobic force and viscoelastic forces). Thus, soft materials with low 
cohesive energies containing hydrophobic groups, as some biological materials, have a large pull-off 
force in water, and the jump-off-contact occurs as a gradual detachment rather than a sharp 
discontinuity. 

Fig. 12. Neck formation in the case of a separation without indentation (panel (a)) and a cut through the system at the point of 
maximum indentation, i.e., the point M in panel (c) (panel (b)). The calculated force-displacement curve corresponding to the 
situation in panel (b) is shown in panel (c). The capital letters from D to X indicate the stages of the non-monotonic 
detachment (reprinted with permission from [55]; copyright 1990 American Association for the Advancement of Science). 
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Fig. 12. (contd.)  

3. Meniscus force exerted by layers of liquid contaminants (chiefly water) acts against the pull-off [57]. 
4. In the absence of chemical bonds, non-elastic deformations or meniscus forces, the interaction force 

could be described by a Lennard-Jones like force and the mechanisms involved in force-  
displacement curves acquisition would be well described by Fig. 2. It is evident that, also in this 
case, the discontinuity CC' is greater than BB'. This is the most important reason of force- 
displacement curves hysteresis, because it is almost always present. 

As for the jump-to-contact, it is not possible to eliminate the jump-off-contact and the approach- 
withdrawal hysteresis, even in the absence of chemical bonds, non-elastic deformations or meniscus 
forces and even if the tip-holder is infinitely rigid. This phenomenon is illustrated by the MD 
calculations of Landman et al. [55] already discussed in Section 3.2. 

In their work, both MD simulations and AFM experiments have been performed with and without 
indentation. When the tip is immediately withdrawn after jump-to-contact, i.e., it is not allowed to 
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indent the sample, the separation is associated with inelastic processes in which the surface atoms of the 
gold sample adhere to the tip. While the tip is further lifted, the contact area decreases and a thin 
"adhesive neck" forms, as shown in panel (a) of Fig. 12. This neck breaks at a distance of 9-10 ,~. The 
pull-off force is of the order of 40 nN. 

When the tip is allowed to indent the sample, the connective neck is wider and elongates for a 
larger distance during withdrawal, as shown in panel (b) of Fig. 12. The elongation process occurs in 
several stages in which the atoms of a layer disorder and then rearrange to build up another layer, i.e., to 
extend the neck. The number of atoms in the neck is roughly constant throughout the elongation 
process. These stages result in a series of monotonous decrease of attractive forces (just after the 
creation of a new Au layer in the neck) followed by increase (before the formation of a further layer), as 
indicated in panel (c) of Fig. 12. The pull-off force is about 60 nN and the neck breaks at a distance of 
about 13 ,~. 

The same behavior (a series of discontinuities) has been predicted for the case of the fracture 
between two identical materials by Lynden-Bell [58]. Pethica and Sutton [54] and Attard and Parker 
[31] obtained similar results by use of Lennard-Jones potentials. 

The associated AFM experiments of Landman et al. exhibit approach-withdrawal hysteresis both 
with and without indentation. The jump-off-contact force is ~ 4 ~tN without indentation and ~ 5 ~N 
with indentation. Pull-off distances are of the order of 16 nm. However, the non-monotonic features 
predicted by MD calculations are not discernible in the withdrawal curve after indentation. The 
experiment is apparently not sensitive to such individual atomic-scale events when averaged over the 
whole contact area. 

In 1995, Agra'/t et al. [59] have succeeded in detecting such discontinuities during jump-to-contact 
and jump-off-contact. They have measured forces between a gold tip and a gold substrate in vacuum at 
liquid helium temperature (the substrate is mounted on the cantilever and also the tunneling current can 
be measured). They showed that necks are formed during jump-to-contact and jump-off-contact, and 
that such necks elongate (compress) during the unloading (loading) process. As the neck is elongated, 
the current decreases stepwise, while the force decreases with an oscillatory sawtooth-like behavior. 
Abrupt relaxations of current correlate to abrupt relaxations of force and they occur at 0.1-0.2 nm 
intervals in displacement. During a complete loading-unloading cycle, structural transformations are 
reversible. The neck radius varies about 1 nm in an elongation of 1 nm. The effective elastic constant of 
the necks varies linearly with the contact radius (see also Ref. [60]). 

The increase of force-displacement curves hysteresis with indentation has also been observed by 
Weisenhorn et al. [61]. For indenting distances smaller than 10, 70 and 150 nm, the pull-off force is 
smaller than 0.35, 0.35 and 0.70 nN. Toikka et al. [62] have measured the dependence of pull-off force 
and adhesion energy on the loading force in air and in water. In air the adhesion energy goes from 3 m J/ 
m 2 for zero load up to 5 mJ/m 2 for a loading force of 120 nN. In water it goes from 0.3 mJ/m 2 for zero 
load up to 1.2 mJ/m 2 for 120 nN. These authors also verified an hysteretical behavior in the dependence 
of pull-off force on loading force along a complete cycle, i.e., first increasing and then decreasing the 
loading force. 

We have already said that both the jump-to-contact and the jump-off-contact due to inherent stiffness 
of the tip cannot be eliminated, but in AFM force-displacement curves, jumps are also due to the 
stiffness of the cantilever, and so they could be eliminated using a stiffer cantilever to the detriment of 
force sensibility. Alternative approaches, making use of magnetic or electric force feedback loops, have 
succeeded in eliminating force-displacement curves discontinuities. 
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In 1992, Gauthier-Manuel [63] devised a feedback loop, using an inhomogeneous magnetic field 
produced by a coil, in order to keep constant the force on a tip and prevent it from jumping onto the 
sample surface. By means of such an apparatus, the author could sample the entire tip-sample force 
law. The feedback loop was not applied to an usual AFM tip mounted on a cantilever, but the author 
himself noted that this would be possible. Jarvis et al. [64] and Yamamoto et al. [65] have developed a 
feedback loop (similar to the one of Gauthier-Manuel) to be applied to the AFM tip. The force on the 
cantilever, and hence the cantilever deflection, is kept constant and the tip-sample force is deduced 
from the feedback correction signal. In both works force-distance curves without hysteresis are shown. 
In order to make the tip sensitive to the applied magnetic field, a small piece of magnetic material is 
mounted directly behind the tip. Quite different approaches are that of Joyce and Houston [66], in 
which the force is counterbalanced by a differential capacitance sensor acting also as displacement 
detector, and that of Bryant et al. [67], in which the deflection of the cantilever is measured by means of 
a tunneling tip and the position of the cantilever is adjusted by moving the lever holder. 

By using these feedback techniques, the stiffness of the cantilever is in practice infinitely increased 
(no displacement of the tip occurs, whichever is the amplitude of the force) without decreasing the 
force resolution. The distance dependence of the force can be entirely sampled without losing the 
details. 

4. The zero  line 

The zero lines are the parts of force-displacement curves in which the tip exerts no force on the 
sample, e.g., when the tip and sample are far apart, and the tip does not deflect. 

Despite that almost no force can be detected in this portion of the curve, zero lines have a great 
importance in that, as discussed in Section 1, all distances are referred to the cantilever rest position. 
Thus, the forces can be calculated only when the deflection of the cantilever, i.e., the difference 
between the current deflection and the rest position, is known. The latter is given by the zero line. 

Zero lines seldom happen to be lines. They always have a superimposed oscillation due to optical 
interference between the beam reflected by the upper face of the cantilever and that scattered by sample 
surface, as shown in Fig. 13. The laser beam (i in Fig. 13) reaches the sample because the laser spot is 
not completely inside the lever surface and because of the fact that part of the light passes through the 
cantilever. The beam that reaches the sample is scattered, resulting in a second beam pointing towards 
the photodiode (r2). r2 interferes with the beam reflected by the upper face of the cantilever (rl). The 
resulting oscillation has a fixed spatial period determined by the laser light wavelength and by the 
microscope geometry. 

The optical path difference s is given by [61]: 

(1 + cos 2(-)) 
s = n O, (4.1) 

COS 0 

in which D is the cantilever-sample distance, 0 the incidence angle and n is the refractive index of the 
medium. If A is the wavelength of the laser, the spatial period of the oscillation is given by 

A 
/3 = (4.2) 

n((l  + cos 2 0 ) / c o s O )  
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Fig. 13. Schematic representation of the interference between the laser beam reflected by the upper face of the cantilever and 
the beam scattered by the sample surface, resulting in an oscillation on the zero lines of the force-displacement curves. 

Also the zero lines exhibit a kind of hysteresis that results in a separation of approach and withdrawal 
traces. The hysteresis of zero lines is due to the viscosity of the medium. The viscous force pulls the 
cantilever upward when approaching the sample and makes it bend downward when the sample is 
withdrawn. Hoh and Engel [40] have measured this hysteresis by altering the viscosity of the medium 
and the scan rate. Force-displacement curves obtained in water and glycerol are shown in Fig. 14. In 
water, there is a notable effect for velocities bigger than 30 ~tm/s. The separation between approach and 
withdrawal zero lines is about 5 nm for a cantilever 200 ~tm long, a scan range of 500 nm and a scan 
rate of 401.tm/s. In a high viscosity medium such as glycerol (15 P instead of 10 2 p for water) the 
separation becomes very large even at low scan rates ( -  10 nm for 0.6 ~m/s and = 50 nm for 4.8 ~m/ 
s). In a low viscosity medium such as air (2× 10 -4 P) zero lines hysteresis is hardly detectable (see also 
Ref. [68]). 
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Fig. 14. Zero-lines hysteresis in water and in glycerol. On the x-axis, the sample position in nm. On the y-axis, the cantilever 
deflection in rim. (reprinted with permission from [40]; copyright 1993 American Chemical Society). 
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5. Calibration 

5.1. Methods Jor the calculation of forces 

All AFM, whether home made or not, provide the cantilever deflection as a function of the distance 
between the sample and the rest position of the cantilever. In order to know the tip-sample force, 
several transformations of the data have to be performed. Eq. (1.10) reveals that, if the sample is much 
more rigid than the cantilever and no deformation of the sample occurs, along the contact line the 
deflection of the cantilever equals the displacement of the piezoactuator, i.e., A~Sc = AZ. 

Usually, if the optical lever method is employed, the deflection of the cantilever is given by the 
voltage output of the photodiode. This voltage, however, depends also on laser spot shape and 
dimensions. Along the contact line, the relation between the voltage output AV and the displacement of 
the piezo is given by 

AbC = AZ = A V / Q ,  (5.1) 

where Q is a proportionality factor. In order to know 6c the zero deflection value V0 of the voltage is 
needed, and can be determined from the zero line. 

A first problem with this procedure is associated with the hysteresis and the creep of the piezo, 
affecting the measurement of Z. As a general rule, the response of the piezo should be checked previous 
to any force-distance curves acquisition and Eq. (5.1) should be applied to approach curves. Further- 
more, depending on the sample, the relation A6c = AZ might not be correct at low loads. Hence, as a 
rule of thumb, it is always better to consider in the above procedure the tangent to the loading curve at 
high loads. The origin of the Z axis is placed at the beginning of the contact line. Because of tip 
asperities, the contact line may begin prior to intimate true contact. Thus, the asperities on the tip affect 
the determination of tip-sample distances. Taking into account all these effects, tip-sample distances 
can be determined by means of the equation: 

A Z -  Lp d31AV. (5.2) 
Wp 

in which Lp and Wp are the length and the wall thickness of the piezotube, d3L is a proportionality factor 
characteristic of materials, and V is the voltage applied to the piezo. 

The factor Q in Eq. (5.1) depends on the dimensions and on the shape of the laser spot on the 
photodiode, and hence depends on the refractive index of the medium in which the measurements are 
performed [69]. Furthermore, this factor may change in time due to the thermal drift of the components 
of the microscope, and should be checked previous to any measurement. 

Once the deflection of the cantilever in nanometers is known, the product k,,A6,, gives the force in 
newtons: 

A F  = k~A(5~ = k~.AV/~. (5.3) 

Once the true tip-sample distance is known, and the force has been deduced from cantilever deflec- 
tions, the curve can be rearranged in order to give a "normalized" representation, i.e., a plot of the 
force vs. the true tip-sample distance D. This representation is referred to as the "force-distance 
curve" (see Section 1.2). This procedure corresponds to the reversal of the geometric construction 
presented in Section 1.2. 
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The main problem in the calculation of forces is given by the knowledge of the cantilever elastic 
constant. 

5.2. The cantilever elastic constant and the tip radius 

The nominal elastic constant of rectangular and "V"-shaped [70] cantilevers is given by 

kc - Et3w (rectangular cantilever), 
4L 3 

and 

(5.4) 

Et3c Wb 
kc = 2b(L~ - L 3) + 6WL~ ("V"-shaped  cantilever), (5.5) 

in which tc is the thickness, E is the Young modulus and the other quantities are defined in Fig. 15. Eq. 
(5.5) is not an exact formula. The elastic constant of "V"-shaped cantilevers was calculated by use of 
the "parallel beam" approximation [71, 72], in which the "V"-shaped cantilever is modeled as a 
couple of rectangular cantilevers. Sader and White [73] have demonstrated the inaccuracy of such an 
approximation by means of a finite element calculation. 

A more accurate formula has been given by Neumeister and Ducker [74]: 

[ ( /]-' k~ =  A I + A I I + ~  W - d  
sin c~  ' 

A I - - E t  3tg~ S ins  2d - d  2 21Ogdsino~ 

1 + 3(Wcot c~ - dcos  c~ - t~ sin c~) 
EWt~ cos 2 c~ cos ct ' 

(5.6) 

A l l  - -  

w 

Fig. 15. Schematic representation of a rectangular and a "V"-shaped cantilever. L and w are the length and the width of the 
rectangular cantilever, W is the width of the arms of the "V-shaped" cantilever, a is the angle between the arms, b and L2 are 
the base and the height of the triangle at the end of the "V-shaped" cantilever, LI is the total height of the "V-shaped" 
cantilever, and d is the distance between the center of the tip and the end of the cantilever. 
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and 

3L(1 + u ) ( W  / 
gA -- EWt3 cosa s~n-a d + ~ ) c o t a  , 

in which u is the Poisson ratio and 0 is given by 

0 = L t g a + ( W - d s i n a ) ( 1  - u ) c o s a  (5.7) 
2 - (1 - u) cos 2 

All the above formulas depend on the knowledge of E and u (E = 304 GPa and u = 0.24 for the silicon 
nitride) that can be measured by different techniques (see Ref. [75] and references therein). Anyway, 
each cantilever has its own elastic constant that can vary between cantilevers on the same wafer, and 
hence, rather than calculate them, it would be better to measure them. Several methods have been 
proposed for doing this as indicated below. 

The most effective method is that proposed by Cleveland et al. [76]. Consider a rectangular 
cantilever with elastic constant k~ and mass mo The resonance frequency of this cantilever is 

k mk--  (5.8) ~(I z 

The effective mass m* is given by m* = mc + 0.24 rot, where mt is the mass of the tip. When an extra 
mass M is added, the resonance frequency becomes 

~/M k~ (5.9) 
~1 = ÷ m*" 

By measuring ~l and ,;0, kc is given by 

M 
k c -  1 / ~ -  1/w 2" (5.10) 

The added extra mass is usually a sphere placed near the end of the cantilever. Since the sphere is 
secured onto the cantilever by adhesive forces (e.g., capillary force), the method turns out to be non- 
destructive. 

Senden and Ducker [77] have proposed a similar method in which a tungsten sphere (10-50 gtm in 
diameter) is glued at the end of the cantilever and the static deflection due to gravity is measured. 
Subsequently, the cantilever is turned upside down and the deflection is measured again. The difference 
/X~5 between the two measurements is twice the deflection due to the gravity. The deflections can be 
calibrated as shown in Section 5.1 and the spring constant is given by 

k~ - 87rR3 p~g , (5.11) 
3A6~ 

in which R is the radius, p the density of the sphere and g is the gravitational acceleration. Hutter and 
Bechhoefer [78] have measured the spring constant of the cantilever from the power spectral density of 
cantilever fluctuations due to thermal noise. If the cantilever is modeled as a harmonic oscillator, then 

~ma;?/5~} = ~knT ~ = kc/m and kc = kBT/(6?,}. (5.12) 
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Rabinovich and Yoon [79] have calibrated the spring constant of a cantilever by comparing it with the 
spring constant of a glass fiber. The glass fiber spring constant is measured by detecting its deflection 
under a known weight. After mounting the glass fiber on a piezoactuator, it is brought into contact with 
the cantilever of unknown elastic constant. The cantilever spring constant is given by 

= k f  - 1 , ( 5 . 1 3 )  

in which kf is the spring constant of the glass fiber and AZ is the displacement of the piezo. The same 
authors have tested their technique together with that of Ducker and Senden, and have compared the 
values obtained with those calculated by means of Eq. (5.4) [80]. All three methods give kc values 
within +7% of each other. 

Finally, Sader et al. [81 ] have developed a technique to calculate the cantilever spring constant once 
the mass or the density of the cantilever is known. These quantities are not provided by the 
manufacturers, so the method is rather useless. 

Another major problem encountered when a quantitative treatment of force-distance curves is 
undertaken is the characterization of the size and shape of tips. Forces depend on the dimensions of the 
tip both on a mesoscopic (overall shape of the tip) and a microscopic range (shape of the apex and 
presence of asperities). Although several approaches to characterize AFM tips exist, none of them 
provides a reliable and general technique easily applicable to all cases. 

A first approach is the examination of tips with the transmission electron microscope (TEM) [82]. If 
Si3N4 tips are to be imaged by TEM, then a coating with Pt/Pd is needed in order to prevent charging, 
while silicon tips can be imaged without coating. Resolutions of the order of 1 nm can be attained. 

Alternatively, once the process of image formation is known, given a surface of known profile 
employed as characterizer, the shape of the tip can be deduced from the artifacts in the image of the 
characterizer [83-89]. Such methods are affected by the uncertainty of characterizers profiles and by 
the poor reliability of mathematical reconstructions of imaging processes. 

Two other methods of calibrating tip size and shape exploit the measurement by means of force-  
distance curves of some forces, namely the Coulomb force [21] and the double-layer force [69]. These 
are treated in Sections 6.1.2 and 6.3.2. 

In order to eliminate the problem of the unknown shape of the tip, Ducker et al. [17] have used 
modified cantilevers with tips of known geometry. Such a technique, generally known as "colloidal 
probe technique", has been widely employed in force-distance curves acquisition. It is implemented by 
gluing at the end of a cantilever a sphere of radius between 2 and 10 ~tm by means of an epoxy resin. 
The radius of the sphere can be determined by electron microscopy and the mean roughness by AFM 
measurements. Fig. 16 shows a colloidal tip glued on a cantilever. A wide variety of materials has been 
employed: silica [17], TiO2 [91], ZnS [62,92], gold [93], polystyrene [94] and others. When a colloidal 
probe is used, curves are often presented as a logarithmic plot of the ratio F/Reff vs. the tip-sample 
separation. The advantage of this technique lies in the exact knowledge of the tip geometry, but it turns 
out to be disadvantageous when a high lateral resolution is needed. Thus, it cannot be effectively used 
in force-distance curves mapping. 

5.3. Noise and systematic errors 

Some general considerations on noise and systematic errors in force-distance curves acquisition are 
discussed here. Other specific artifacts are listed in Sections 2.4, 6.2.3, and 6.3.3. 
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Fig. 16. A silica colloidal probe attached on a silicon nitride cantilever (reprinted with permission from [90]; copyright 1993 
American Chemical Society). 

The noise level of a force-distance curve, due to thermal agitation, mechanical vibrations of the 
apparatus and/or turbulence of the liquid environment, depends on the cantilever stiffness, and is 
usually < 30 pN. Sources of the noise vary widely. Along the zero lines the noise is dominated by the 
thermal agitation, whereas along the contact lines, the thermal agitation is damped but mechanical 
vibrations are enhanced. In order to minimize the effects due to thermal drift, force-distance curves 
should be acquired with high scan rates but, over a certain threshold speed, dynamic effects begin to 
affect the measurement. This threshold value depends on the environment and can be roughly put at 
1 pm/s in air [95]. Another obvious approach to minimize thermal noise consists in averaging several 
force-distance curves acquired on the same point and in the same conditions. This approach implies a 
careful superposition of curves. 

The calculation of forces is affected by systematic errors in the estimation of the cantilever spring 
constant and tip radius. Since deflections are obtained from the contact line through Eq. (5.1), errors 
due to the sample compliance are possible, and are specific for each material and sample. 

The estimation of distances is affected by systematic errors in piezo response and by piezo hysteresis 
and creep, which depend on the history of the piezo and on the scan rate. 

Finally, digitalization errors must be considered. Siedle and Butt [68] have demonstrated that the 
cantilever oscillates due to its coupling to the discrete steps of the piezo via the liquid. This oscillation 
affects both the zero deflection and the determination of the jump-to-contact. 


